
RhythmIQ High-Level Design

Ryan Hamby (hambyr@umich.edu)
January 20, 2025

Purpose

This document follows from the high-level design [link] created for developing the
environment-driven music recommendation system, RhythmIQ. Within this LLD, several
technologies are explored with tradeoffs and considerations outlined to explain the thought
process of choosing specific components.

Overview
This application includes a public control plane for handling high-TPS requests and an internal
ML service responsible for updating and managing machine learning models.

Figure 1. RhythmIQ High-level Architecture Diagram

mailto:hambyr@umich.edu

Resources

All resources will be created with a unique 36-char UUID to serve as their identifier. UUIDs are
unique per resource and cannot be set by the user.

Top-level Resources
1.​ Profile

a.​ When a user onboards, he/she creates a profile
i.​ In the response, it returns a profile-id (UUID) which is used for other APIs
ii.​ This UUID will be used in most instances as keys for things like API keys

and S3 object keys
1.​ See _____ section to discuss UUID compression for optimizing

cache memory utilization
b.​ Captures basic details about a user
c.​ Many components in the system rely on a unique email– there cannot be any two

users with the same email
d.​ A profile’s UUID and email address are immutable once set. If a profile is deleted

and recreated, a new random UUID will be assigned.
i.​ Emails can be re-used only when the profile is deleted
ii.​ In order to delete a profile, a user must also first delete all of its secondary

resources. The system should be designed such that it could be possible
for RhythmIQ to delete all second-level resources on behalf of the user
automatically.

e.​ See Appendix ___ to see the shape and attributes of this object

Second-level Resources
2.​ Preference

a.​ Represents a user’s favorability to choose certain types:
i.​ Initial preferences will be a type: genre, tempo, instrument, or

artist
ii.​ Must fit into one of these types. Will be validated when created/updated
iii.​ Can have up to 100 preferences

1.​ Favorite preference will be at index 0
2.​ Least favorite preference will be at index 99

b.​ Just like a user’s preferences change, a preference can alter over time as well
i.​ A preference type cannot be changed once created. The preference

must be deleted and then recreated with a different type
c.​ Configurable such that the application can weight each preference
d.​ Composed of two components

i.​ User-set preferences → what the user sets/tells the application he/she
enjoys listening to the most

ii.​ Application-learned preferences → information that the application learns
overtime by analyzing music listening patterns

1.​ Will be kept internal for initial release. If this data is valuable
enough, exposing this can be sold to customers as part of a
premium subscription

e.​ See Appendix ___ to see the shape and attributes of this object
3.​ TuneVector

a.​ Represents playlists, podcasts, soundscapes, etc that are delivered to the
application user.

b.​ The vector can be re-sorted, adjusted to point in a new direction, or even curve a
user into a zone of focus through a series of songs and sounds

i.​ For example, imagine this is a 5D vector relying on a set of variables
ii.​ The vector can start the music in a dopamine-inducing state involving

something such as rock music, and slowly transition into slower, quieter
songs that deliver soundscapes emulating a conducive study environment
without the user noticing or managing the application.

1.​ This feature can be referred to as “Ascent” or “Descent”
c.​ TuneVectors should represent algorithms similar to short-form video algorithms in

which each set of songs is tailored to the ML-based content that the user prefers.
d.​ North star → support modes in which:

i.​ The user can guide the vector’s progression via a time-constrained
selection of genres to navigate through

ii.​ An AI mode in which the vector self-adapts based off music listening
patterns and other environment-related data

e.​ See Appendix ___ to see the shape and attributes of this object
4.​ Variable

a.​ Variables refer to the externally-exposed information about the environment of a
user

b.​ These are not an exhaustive list of parameters used to train a model
i.​ For instance, averageTimeToSkip will be kept internal to the

application
c.​ A user must opt-in to each variable. Variables will not be opted into automatically.
d.​ A user can opt-out of collecting variable data at any time.
e.​ This can include, but is not limited to:

i.​ Ambient noise level
ii.​ Time of day
iii.​ Outside temperature
iv.​ Location and specifically patterns in location
v.​ Ratings of previous vectors recommended for the user

vi.​ Heart rate variability (HRV)
vii.​ Accelerometer (helpful for runners and similar athletes)

f.​ See Appendix ___ to see the shape and attributes of this object

Components: Considerations and Tradeoffs
1.​ AWS API GW

a.​ Will use a REST API format, as opposed to HTTP or WebSocket
i.​ HTTP APIs have downsides such as no caching, no rate limiting, and no

support for AWS WAF and backend authentication.
ii.​ WebSocket APIs are useful for when the client and server need to send

bidirectional messages to each other independently.
1.​ This is useful for streaming and real-time services, but not here.

b.​ This component will not use ACM at P0. ACM is useful for custom domain
names, but is not necessary for a P0 of this project.

i.​ Additionally, this project will be bootstrapped to avoid costs to manage
and maintain over time, and custom domain names add costs.

c.​ All API GW REST APIs have TLS 1.2 and SSL/TLS certificates by default that
are owned and managed by AWS

d.​ CORS will be applied at the API resource level
i.​ Structure is API GW → API → Resource → Method. An API is deployed

to a stage via a deployment in order to “publish” it for use
ii.​ REST APIs

e.​ Usage plans will key by the <IdP_name>_<Cognito User Pool sub claim>
************* Should use the UUID of the user

2.​ AWS Cognito
a.​ This will use Cognito User Pools to handle authentication
b.​ Spotify uses OIDC Federation to allow users to sign in with Spotify and pass

credentials back to the AWS-hosted application
c.​ Users will call the API GW endpoints with a Cognito JWT

3.​ AWS Lambda
a.​ Lambda is the most cost-effective technology for this application at its initial

launch, until the application scales up to require lower-latency and higher-TPS
constraints

i.​ ECS or EC2 would be a better choice for a backend infrastructure
platform when containerization and/or custom workloads need to run
(especially if the processing time for specific requests exceed 15 minutes)

b.​ To reduce cold start latency, this application can use either SnapStart or
provisioned concurrency.

i.​ SnapStart is free for Java applications, but costs money for others. This
can improve cold start times by up to 90%

ii.​ Provisioned concurrency (on an alias) costs more money but is best for
latency-sensitive applications since it eliminates cold starts when the
demand for concurrency <= provisioned concurrency

c.​ Each function will be assigned a reserved concurrency of 10 by default in order to
prevent DDoS attacks from consuming all Lambda concurrency within an account

d.​ Memory will be scaled up per function, but will start at the minimum of 128 MB.

e.​ For any jobs that require loading ML models in to ephemeral memory, the limit on
ephemeral memory will be scaled accordingly (with a CW alarm)

f.​ Lambda timeouts will be set about 50% higher than their p99 execution time after
observing traffic for about 1 week on each function. The default will be 1 minute
to help scale up operations

4.​ Amazon S3
a.​ S3 will house a pre-processed format of data before it is sent to SageMaker.
b.​ S3 customer training data will be stored in the

song-recommendation-data-<account-id>-<region> bucket
c.​ Artifacts of SageMaker are also stored in S3
d.​ An application can store thousands of models in S3. Scalability for a 1-1 mapping

per user is not a major concern
e.​ Objects will be versioned such that the user can have their most recent model be

stored as the most recent version
f.​ S3 buckets will be encrypted with S3-SSE
g.​ S3 objects will be stored in One-zone Infrequent Access (IA) storage tier. If a

model is lost due to natural disaster or outage, the most up-to-date data is stored
in the DDB table used to create a new model. If the S3 object is lost due to a
zonal outage, the application will throw an error and retry training on impacted
users.

5.​ AWS SageMaker
a.​ This is purely an ML-based use-case. There is no clear use-case for using

GenAI, so we leave Bedrock out of scope for now
b.​ Will make use of Multi-model endpoints to load more than one model dynamically

from S3 at a time
c.​ Will use serverless inference in order to only pay when the model is invoked. This

will also utilize spot instances to save costs up to 70%
d.​ Will use FP16, INT8 quantization, or knowledge distillation in order to compress

models for cheaper storage and faster inference.
e.​ It’s likely the best models will be built with Matrix Factorization or Neural

Collaborative Filtering, but for initial training this application can use AutoML with
SageMaker Autopilot to find the best model for the recommendation system

f.​ Once a model is selected to show the best results (with graphs of how this is
determined), we can select hyperparameters to optimize for custom tuning.

6.​ Amazon DynamoDB
a.​ Will be used as the primary database for storing user interactions, metadata, and

model recommendations.
b.​ Table Structure:

i.​ Users Table: Stores user profiles and preferences.
ii.​ Interactions Table: Logs user interactions with recommended songs for

feedback loops.
iii.​ Models Table: Stores metadata of trained models and their versions.

c.​ Indexing:

i.​ GSI (Global Secondary Index) for querying user interactions efficiently. Up
to 20 GSIs can be created on a table, but can be done after table
creation.

ii.​ There is no base case to search the sort key efficiently, so no LSI will be
created. This must be done at creation time.

d.​ Capacity Mode:
i.​ On-demand capacity mode initially for cost savings and automatic scaling.
ii.​ Provisioned mode can be enabled with Auto Scaling once traffic patterns

are predictable.
e.​ Data Retention:

i.​ TTL (Time to Live) will be used to delete stale interaction data after 90
days.

f.​ Backups and Security:
i.​ Point-in-time recovery will be enabled for critical tables.
ii.​ Encryption at rest with AWS KMS.

7.​ AWS StepFunctions
a.​ will orchestrate complex workflows in a serverless manner

b.​ Use Cases:
a.​ Orchestrating model training and deployment lifecycle in

SageMaker.
b.​ Managing ETL jobs for processing interaction data.

2.​ Error Handling & Retries:
a.​ Implement exponential backoff for transient failures.
b.​ Dead-letter queue (DLQ) for capturing failed executions.

Tech Stack
1.​ Frontend

a.​ Application will use a React frontend with react-native-web in order to allow an
easier transition to React Native if the application eventually requires a robust
mobile platform

b.​ React offers extensive library support, component reusability, browser support,
and testing libraries

c.​ Alternatives below were considered:
i.​ Vue.js → too simple and only useful for simple apps, especially

single-page ones
ii.​ Express.js → this also defines a backend, which should instead be

handled by Java directly
iii.​ Angular.js → higher learning curve, less support for mobile applications

2.​ Backend
a.​ Code that handles client-facing requests will be written in Java (JDK 21). In

general, backends written in Java are strongly-typed and can be maintained well.

i.​ Java also currently is the only language that AWS Lambda supports for
free when using Lambda SnapStart. The alternative is to use a vast
amount of provisioned concurrency on Lambda functions for every API,
which will grow costly.

ii.​ If the backend does migrate to EC2 or ECS, the stack is more portable on
a JVM-based application stack. This enables efficient memory
management, multithreading, and language support.

iii.​ Note: If AWS had more support for Go, then Go would be considered
more since it has better memory footprint and runtime performance.

b.​ Code that handles ML model training and recommendations will use Python. This
will leverage CRON jobs and Python-based ML libraries such as Pytorch and
Tensorflow, which primarily build on Python.

3.​ Infrastructure
a.​ Will use AWS CDK. CDK is a clean interface to be able to organize AWS

resources and stacks programmatically.
b.​ Another option is Terraform, but this does not support nearly as many features as

AWS CDK since it is owned by a separate company. It is unlikely that the vendor
will be switched to a different cloud platform.

4.​ Dependency Injection
a.​ Dagger is generally the gold standard if not using SpringBoot

i.​ SpringBoot is useful to define the entire server, and generally is built for
long-running applications, not those confined to 15 minute runtimes

ii.​ Dagger also benefits from lighter memory footprint and runs its DI checks
at compile time, making it easier to use for serverless frameworks

b.​ Google Guice is also a powerful library but tends to suffer memory constraints
5.​ Pipeline and CI/CD

a.​ Will operate out of the us-east-1 region on AWS. This region supports the highest
quotas and is generally easiest to work with services ACM, IAM, and CloudFront.

b.​ Will host PRs in GitHub, and merge on UI
c.​ Will use AWS CodeBuild, AWS CodePipeline, and AWS CodeDeploy to manage

CI/CD
d.​ Utilizes CW alarms to be able to rollback and block deployments
e.​ Will be split into the following stages:

i.​ Devo
1.​ Allows for test deployments in local environment

ii.​ Beta
1.​ Allows for first-stage deployments. There should be at least two

stages between a newly-merged commit and production.
2.​ 1 hour bake time

iii.​ Gamma
1.​ Runs any integration tests and some canaries before the code

reaches prod.
2.​ Leaves a 3 hour bake time such that any issues can be caught

iv.​ Prod

https://docs.aws.amazon.com/lambda/latest/dg/snapstart.html#snapstart-pricing

1.​ Deploys the new code in gradual rollout.
2.​ 4 hour baketime at the end in case there is a need to rollback.

6.​ CRM
7.​ Project Management
8.​ Monitoring
9.​ Logging
10.​Deployment
11.​Testing

a.​ Unit testing → 90% line and branch coverage enforced

API Design

This section serves to enumerate a few options available for clients to call the APIs.

A few considerations:

1.​ Versioning
a.​ This set of APIs will not support versioning from the start. Versioning APIs can be

costly, controversial, and be a side effect of improper upfront design
b.​ See this reference for more details on why not to version
c.​ Google also has a published public doc on this, and recommends

content-negotiation or v2+ versioning if it does end up being necessary
2.​ OpenAPI Definition

a.​ This combines concepts of both REST and gRPC into one (ie, it uses full path
discoverability to operate on entities that are abstracted by procedures by the
RPC convention)

b.​ This application may not necessarily be able to enforce all client protocols, so
gRPC is not the best choice in this application

c.​ Here is a Google-written doc on this design choice
3.​ Protocol

a.​ HTTP/2. New APIs on web-based servers experience faster performance and
scaling with this version. HTTP/3 is slightly newer, and sticking to TCP transport
layer protocol is still stable technology.

i.​ HTTP/3 is not supported in some browsers yet such as Safari
4.​ Profile APIs

a.​ There is no ListProfiles API since users can only have a single profile. If needed,
ListProfiles will be created as an internal-only API

5.​ Replacement behavior
a.​ Full replacement (PUT)

i.​ Useful for overwriting an entire configuration/resource and resources are
simple and/or infrequently updated.

ii.​ Passes ownership of the resource lifecycle management to the client
since the client has to maintain the previous and expected new state of
the metadata.

https://www.hmeid.com/blog/just-say-no-to-versioning
https://cloud.google.com/blog/products/api-management/common-misconceptions-about-api-versioning
https://cloud.google.com/blog/products/api-management/understanding-grpc-openapi-and-rest-and-when-to-use-them
https://www.lambdatest.com/web-technologies/http2
https://www.lambdatest.com/web-technologies/http3

iii.​ Will be used for the Profile APIs that deal with simple structures and
limited metadata

b.​ Partial update (PATCH)
i.​ Useful when the data is large, updated frequently, and clients only need to

modify specific fields.
ii.​ Can be more difficult to manage on the backend but helpful for clients

such that they don’t need to manage large payloads.
iii.​ Also helps to prevent bugs and customer misunderstandings from

accidentally overwriting data in the application
iv.​ Will be used for APIs that deal with frequently updating data and

complex structures, such as music preferences
6.​ Authentication & Authorization

a.​ Will use OAuth 2.0 in order to login to downstream clients, such as Spotify (also
uses OAuth 2.0).

i.​ The application will have to request certain scopes to read the data such
as playlist-read-private , user-library-read , and
user-top-read

ii.​ Spotify and other music services will pass back a JWT
iii.​ The application will refresh the token when it expires using the refresh

token
1.​ When a user is created, create an EventBridge rule that will invoke

a Lambda to refresh the token before it expires and write to DDB.
2.​ The refresh Lambda handler will create another EventBridge rule

to continuously fetch the refresh token, and store it back in DDB
iv.​ Will not use RBAC (Role-based access control) or ABAC (Attribute-based

access control) since OAuth covers permissions
v.​ This app will not support multi-user login to a profile, nor will it support

multi tenancy. There will be a 1-1 mapping of the user to profile.
b.​ Spotify will redirect the user back to the app with an authorization code in order to

access user data needed to train the model, create playlists, etc
c.​ To implement this on API GW, this will use a Lambda Authorizer that does the

customer authentication.
i.​ Cognito User Pools cannot be used since they do not support Spotify

directly. Many Spotify accounts do not use Social login, so passing the
Google/Apple/Facebook/Amazon login info will not unlock data

7.​ Cache
a.​ Many non-mutating APIs are introduced in this application and eventual

consistency is tolerable (read-after-write consistency is preferred, but not
required), so caching is

b.​ The API GW will require canary traffic on the APIs in order to measure a baseline
SLA on the APIs. Once baseline traffic is calculated, the performance
improvement of adding the cache can be calculated

c.​ The default TTL of 300 sec will be used to start, and can be right-sized as traffic
grows

https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools.html#:~:text=using%20AWS%20SDKs-,Sign%2Din,-Amazon%20Cognito%20can
https://docs.aws.amazon.com/cognito/latest/developerguide/cognito-user-pools.html#:~:text=using%20AWS%20SDKs-,Sign%2Din,-Amazon%20Cognito%20can

d.​ API GW built-in cache is sufficient compared to Elasticache (Memcached and
Redis).

i.​ The built-in cache enables better pricing since it only needs to cache GET
idempotent requests. Elasticache would be more effective for caching
DB-layer data or for ultra-high traffic with more access to fine-tune the
cache

ii.​ To note: Memcached is designed for simplicity while Redis offers a rich
set of features that make it effective for a wide range of use cases. Redis
offers snapshots facility, replication, and supports transactions, which
Memcached cannot.

8.​ CORS
a.​ This requires CORS to call the APIs from a custom domain that the application

will be hosted from
b.​ Clients can call the API in preflight to assess routes available for the CORS

protocol
9.​ Rate Limiting

a.​ Use API keys based on a random UUID of each profile, and then perform a
lookup in the DDB for that API key if it exists each time.

b.​ Both Google and AWS have documentation on how to map this to a user account
10.​Error Handling

a.​ Will surfaced all client messages to frontend with descriptive error messages
b.​ The following will not show an error on the API itself, but the frontend may help to

guide users by catching/rethrowing the errors:
i.​ 200 OK
ii.​ 400 Bad Request
iii.​ 401 Unauthorized (failed OAuth)
iv.​ 403 Forbidden (Authenticated, but not authorized)
v.​ 404 Not Found

vi.​ 500 Internal Server Error
vii.​ 429 Too Many Requests

11.​Testing
a.​ All PRs will require 90% unit test line and branch coverage, and this will be

enforced at build time as well
b.​ Integration tests will be added to the pipeline in Jenkins

12.​Monitoring
a.​ Via AWS CDK, this application will have CloudWatch alarms based on the p99

latency, error rates, and availability of the API.
b.​ If the application grows to need a containerized backend, Prometheus or Grafana

should be considered to test endpoint availability without locking into the AWS
ecosystem

13.​Security
a.​ APIs will adhere to sigV4 signing and require a generated SSL certificate rotated

at least quarterly

https://cloud.google.com/docs/authentication/api-keys-use
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-api-key-source.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/getting-started-client-side-ssl-authentication.html

b.​ AWS Web Application Firewall will be enabled to minimize chances of SQL
injection and cross-site scripting attacks.

This application will have the following APIs:

API Name Route Method Priority

CreateProfile* /profiles POST P0

UpdateProfile* /profiles/<profile-id> PUT P0

GetProfile /profiles/<profile-id> GET P0

DeleteProfile /profiles/<profile-id> DELETE P0

CreatePreference /profiles/<profile-id>/preferences CREATE P0

UpdatePreference /profiles/<profile-id>/preferences/<preference-id> PATCH P0

GetPreference /profiles/<profile-id>/preferences/<preference-id> GET P0

DeletePreference /profiles/<profile-id>/preferences/<preference-id> DELETE P0

ListPreferences /profiles/<profile-id>/preferences GET P0

CreateTuneVector /profiles/<profile-id>/tune-vectors CREATE P0

UpdateTuneVector /profiles/<profile-id>/tune-vectors/<tune-vector-id> PATCH P0

GetTuneVector /profiles/<profile-id>/tune-vectors/<tune-vector-id> GET P0

DeleteTuneVector /profiles/<profile-id>/tune-vectors/<tune-vector-id> DELETE P0

ListVectors /profiles/<profile-id>/tune-vectors/<tune-vector-id> GET P0

CreateVariable /profiles/<profile-id>/variables CREATE P1

UpdateVariable /profiles/<profile-id>/variables/<variable-id> PATCH P1

GetVariable /profiles/<profile-id>/variables/<variable-id> GET P1

DeleteVariable /profiles/<profile-id>/variables/<variable-id> DELETE P1

ListVariables /profiles/<profile-id>/variables GET P1

Components for P1 and Beyond

Web Application Firewall

https://docs.aws.amazon.com/apigateway/latest/developerguide/apigateway-control-access-aws-waf.html

Appendix

CreateProfile

CreateProfileRequest

HTTP/2 POST /profiles
Content-type: application/json

{

 "username": "string", // required

 "firstName": "string", // required

 "lastName": "string", // required

 "email": "string", // required

 "phoneNumber": "string", // required

 "password": "string", // required

}

CreateProfileResponse

201 Created

{

 "message": "Profile created successfully",

 "profileId": "unique-profile-id"

}

400 Bad Request

{
 "message": "Validation failed",
 "errors": {
 "email": "Invalid email format",
 "password": "Password must be at least 8 characters long"
 }
}

409 Conflict

{

 "message": "Username or email already exists"

}

UpdateProfile

UpdateProfileRequest

HTTP/2 PUT /profiles/<profile-id>
Content-type: application/json

Note: omits email since email is immutable for an account

{

 "username": "string", // Optional

 "firstName": "string", // Optional

 "lastName": "string", // Optional

 "phoneNumber": "string", // Optional

 "password": "string" // Optional, if changing passwords

}

UpdateProfileResponse

200 OK

{ ​
 "message": "Profile updated successfully", ​
 "profileId": "<profile-id>", ​
 "updatedFields": ​
 { ​
 "firstName": "NewFirstName", ​
 "lastName": "NewLastName" ​
 } ​
}

400 Bad Request

{ "message": "Validation failed", "errors": { "email": "Invalid email

format", "phoneNumber": "Phone number must include a country code" } }

401 Unauthorized

{ "message": "Unauthorized access. Please provide a valid token." }

404 Not Found

{ "message": "Profile with the specified ID does not exist" }

409 Conflict

{

 "message": "Email or username already in use"

}

References

1.​ https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issu
es.html

https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html
https://docs.aws.amazon.com/apigateway/latest/developerguide/api-gateway-known-issues.html

	RhythmIQ High-Level Design
	Purpose
	Overview
	Resources
	Top-level Resources
	Second-level Resources

	Components: Considerations and Tradeoffs
	Tech Stack
	API Design
	Appendix
	CreateProfile
	
	UpdateProfile

